segunda-feira, 22 de agosto de 2016

LINKAGE



A 2ª Lei de Mendel é sempre obedecida?

A descoberta de que os genes estão situados nos cromossomos gerou um impasse no entendimento da 2º Lei de Mendel. Como vimos, segundo essa lei, dois ou mais genes não-alelos segregam-se independentemente, desde que estejam localizados em cromossomos diferentes. Surge, no entanto, um problema. Mendel afirmava que os genes relacionados a duas ou mais características sempre apresentavam segregação independente. Se essa premissa fosse verdadeira, então haveria um cromossomo para cada gene. Se considerarmos que existe uma infinidade de genes, haveria, então, uma quantidade assombrosa de cromossomos, dentro de uma célula, o que não é verdade. Logo, como existem relativamente poucos cromossomos no núcleo das células e inúmeros genes, é intuitivo concluir que, em cada cromossomo, existe uma infinidade de genes, responsáveis pelas inúmeras características típicas de cada espécie. Dizemos que esses genes presentes em um mesmo cromossomo estão ligados ou em linkage e caminham juntos para a formação dos gametas.

Assim a 2ª lei de Mendel nem sempre é obedecida, bastando para isso que os genes estejam localizados no mesmo cromossomo, ou seja, estejam em linkage.


Linkage

Genes unidos no mesmo cromossomo




 T. H. Morgan e seus colaboradores trabalharam com a mosca da fruta, Drosophila melanogaster, e realizaram cruzamentos em que estudaram dois ou mais pares de genes, verificando que, realmente, nem sempre a 2ª Lei de Mendel era obedecida. Concluíram que esses genes não estavam em cromossomos diferente, mas, sim, encontravam-se no mesmo cromossomo (em linkage).


Um dos cruzamentos efetuados por Morgan
Em um dos seus experimentos, Morgan cruzou moscas selvagens de corpo cinza e asas longas com mutantes de corpo preto e asas curtas (chamadas de asas vestigiais). Todos os descendentes de F1 apresentavam corpo cinza e asas longas, atestando que o gene que condiciona corpo cinza (P) domina o que determina corpo preto (p), assim como o gene para asas longas (V) é dominante sobre o (v) que condiciona surgimento de asas vestigiais.
A seguir Morgan cruzou descendentes de F1 com duplo-recessivos (ou seja, realizou cruzamentos testes). Para Morgan, os resultados dos cruzamentos-teste revelariam se os genes estavam localizados em cromossomos diferentes (segregação-independente) ou em um mesmo cromossomo (linkage).
Surpreendentemente, porém, nenhum dos resultados esperados foi obtido. A separação e a contagem dos decendentes de F2 revelou o seguinte resultado:
  • 41,5% de moscas com o corpo cinza e asas longas;
  • 41,5% de moscas com o corpo preto e asas vestigiais;
  • 8,5% de moscas com o corpo preto e asas longas;
  • 8,5% de moscas com o corpo cinza e asas vestigiais.
Ao analisar esse resultado, Morgan convenceu-se de que os genes P e V localizavam-se no mesmo cromossomo. Se estivessem localizados em cromossomos diferentes, a proporção esperada seria outra (1: 1: 1: 1). No entanto, restava a dúvida: como explicar a ocorrência dos fenótipos corpo cinza/asas vestigiais e corpo preto/asas longas?
A resposta não foi difícil de ser obtida. Por essa época já estava razoavelmente esclarecido o processo da meiose. Em 1909, o citologista F. A. Janssens (1863-1964) descreveu o fenômeno cromossômico conhecido como permutação ou crossing over, que ocorre durante a prófase I da meiose e consiste na troca de fragmentos entre cromossomos homólogos.



























Em 1911, Morgan usou essa observação para concluir que os fenótipos corpo cinza/asas vestigiais e corpo preto/asas longas eram recombinantes e devido a ocorrência de crossing-over.

 Como diferenciar Segregação independente (2ª Lei de Mendel) de Linkage?

Quando comparamos o comportamento de pares de genes para duas características para a segunda lei de Mendel com a ocorrência de linkage e crossing-over em um cruzamento genérico do tipo AaBb X aabb, verificamos que em todos os casos resultam quatro fenótipos diferentes:
  • Dominante/dominante
  • Dominante/recessivo
  • Recessivo/dominante
  • Recessivo/recessivo.
A diferença em cada caso está nas proporções obtidas. No caso da 2ª lei de Mendel, haverá 25% de cada fenótipo. No linkage com crossing, todavia, os dois fenótipos parentais surgirão com frequência maior do que as frequências dos recombinantes.
A explicação para isso reside no fato de, durante a meiose a permuta não ocorrer em todas as células, sendo, na verdade, um evento relativamente raro. Por isso, nos cruzamentos PpVv X ppvv, da pagina anterior, foram obtidos 83% de indivíduos do tipo parental (sem crossing) e 17% do tipo recombinantes (resultantes da ocorrência de permuta).
Frequentemente, nos vários cruzamentos realizados do tipo AaBb X aabb, Morgan obteve os dois fenótipos parentais (AaBb e aabb), na proporção de 50% cada. Para explicar esse resultado, ele sugeriu a hipótese que os genes ligados ficam tão próximos um do outro que dificultam a ocorrência de crossing over entre eles. Assim, por exemplo, o gene que determina a cor preta do corpo da drosófila e o gene que condiciona a cor púrpura dos olhos ficam tão próximos que entre eles não ocorre permuta. Nesse caso se fizermos um cruzamento teste entre o duplo-heterozidoto e o duplo-recessivo, teremos nos descendentes apenas dois tipos de fenótipos, que serão correspondentes aos tipos parentais.

Os arranjos “cis” e “trans” dos genes ligados

 Considerando dois pares de genes ligados, como, por exemplo, A/a e B/b, um indivíduo duplo heterozigoto pode ter os alelos arranjados de duas maneiras nos cromossomos:
Os alelos dominantes A e B se situam em um cromossomo, enquanto os alelos recessivos a e b se situam no homólogo correspondente. Esse tipo de arranjo é chamado de Cis. O alelo dominante A e o alelo recessivo b se situam em um cromossomo, enquanto o alelo recessivo a e o alelo dominante B, se situam no homólogo correspondente. Esse tipo de arranjo é chamado de Trans







Podemos descrever esses arranjos, usando um traço duplo ou simples para descrever o cromossomo, ou mais simplificadamente, o arranjo pode ser descrito como AB/ab para Cis e Ab/aB para trans. O arranjo cis e trans dos alelos no duplo-heterozigoto pode ser facilmente identificado em um cruzamento teste. No caso dos machos de Drosófila, se o arranjo for cis (PV/pv), o duplo heterozigoto forma 50% de gametas PV e 50% de gametas pv. Se o arranjo for trans (Pv/pV), o duplo heterozigoto forma 50% de gametas Pv e 50% de pV.
Nas fêmeas de Drosófila, nas quais ocorrem permutações, o arranjo cis ou trans pode ser identificado pela frequência das classes de gametas. As classes mais frequentes indicam as combinações parentais e as menos frequentes as recombinantes.


Disponível em: http://www.sobiologia.com.br/conteudos/Genetica/2leidemendel4.php
 

RECONHECENDO UM CASO DE LINKAGE
Para reconhecermos um caso de linkage, é importante analisar os tipos de gameta formados por indivíduos heterozigotos e suas proporções. Imagine as seguintes situações:
Caso a) O indivíduo AaBb produz os seguintes gametas: ¼ AB; ¼ Ab; ¼ aB; ¼ ab.
Caso b) O indivíduo BbCc produz os seguintes gametas: ½ BC; ½ bc.
Caso c) O indivíduo CcDd produz os seguintes gametas: 40% CD, 10% Cd; 10% cD; 40% cd.
Veja que, no caso a, foram produzidos quatro gametas diferentes, todos na mesma proporção, indicando, assim, um caso claro de segregação independente. Já no caso b, formaram-se apenas dois gametas e ambos também com a mesma proporção. Sendo assim, esse caso representa um exemplo claro de linkage. Por fim, temos o caso c, que apresentou quatro gametas diferentes, porém em diferentes proporções. Quando isso acontece, dizemos que é um caso de linkage, porém com um diferencial de que é a ocorrência de uma permutação ou crossing-over.





MAPAS GENÉTICOS

Mapa genético, mapa cromossômico ou mapa de ligação é uma representação gráfica das distâncias entre genes e de suas posições relativas em um cromossomo. Essa distância é calculada a partir da porcentagem de permutações (porcentagens de genes recombinantes produzidos em cruzamentos) – ou taxa de crossing-over entre eles. A unidade de medida utilizada é chamada de “morganídeo”.
Para se obter um mapa genético é preciso levar em consideração que quanto maior for a taxa de recombinação gênica, maior será a distância entre os genes e vice-versa. Vale lembrar que, quanto maior a distância entre os genes, maior a possibilidade de haver crossing-over.
Ex:
Porcentagem de recombinação entre genes A e B: 19%
Porcentagem de recombinação entre A e C: 2%
Porcentagem de recombinação entre B e C: 17%
A distância entre A e B será de 19 morganídeos; A e C, de 2 morganídeos e B e C, de 17 morganídeos:
 







Nenhum comentário:

Postar um comentário